1. Creative manipulation of existing technologies (like using cell phones for medical imaging [1])
2. Building new technologies with cost in mind, rather than addressing it as an afterthought
3. Going smaller:
nanotechnology could enable us to do more with less material. Although the development of such technology would be expensive, in the long run it could cut costs
4. Improve basic scientific knowledge.
Dr. Bogen noted that many people today question Vannevar Bush's insistence on fundamental knowledge as opposed to practical applications. Think, however, about the advantages of complete knowledge. If we could precisely model the behavior of molecules on a virtual level with advanced knowledge of biochemistry, we could bypass costly clinical trials since we would already know the exact outcome of the treatment.
5. Getting personal:
As I blogged about earlier, clinical trials provide knowledge about the population, not about a specific individual. Once we move beyond the clinical trial - based nature of medical research, we could personalize treatments for individuals' specific genotypes and phenotypes to achieve better results with the same effort.
6. Make technology more user-friendly.
As I noted in my last blog, the new cell-phone imaging technology produced at Berkely would allow anyone with some basic cell phone technology to do medical imaging, but not to interpret the results [1]. We need to be able to use technology not just to determine information but also to present information in comprehensible ways. This ties in with the importance of communication in engineering and in medicine.
7. Consider the impact on society.
Although it may be in the interests of one individual or company to conduct research in an expensive manner and then charge exorbitant fees for the resulting technology, society cannot bear the strain of many such individuals taking care of their own interests at the costs of everyone else. According to information from the American University Washington College of Law, "There are many examples of the successes of our super-charged pharmaceutical marketing system at shifting massive amounts of prescriptions toward newer, more expensive drugs that do not benefit patients" [2]. We have to realize that if we don't think from a societal perspective, we will all suffer.
8. Don't go after lofty but impractical goals.
Like I said before, we all want to solve the big problems like cancer, AIDS, and heart disease. There are, however, many approaches to all of these problems. We shouldn't dive into an avenue of research if it looks like there are more cost-effective options.
9. Common Sense.
This is actually less common than the name implies. Good old-fashioned efficiency could go a long way.
10. Making systems of technologies interact with each other more efficiently.
We see this every day in the real world when hardware and software made by different companies or even the same company don't interact in the way they were intended. In the medical world, combinations of drugs taken together can often be dangerous but can sometimes work properly. On another level, researchers using technologies not available to the general public may have problems transferring data from one format to another or interpreting and manipulating the data. This goes along with making research in general more user-friendly.
Works Referenced
[1] Yang, Sarah. UC Berkely Researchers Bring Fluorescent Imaging to Mobile Phones for Low-cost Screeining in the Field. UC Berkely News. 21 July 2009. Available: http://www.berkeley.edu/news/media/releases/2009/07/21_cellscope.shtml.
[2] Flynn, Sean. Litigation Challenging Regulation of Data Mining. American University Washington College of Law: Program on Information Justice and Intellectual Property. 31 March 2008. Available: http://www.wcl.american.edu/pijip/go/blog-post/litigation-challenging-regulation-of-data-mining.
[1] Yang, Sarah. UC Berkely Researchers Bring Fluorescent Imaging to Mobile Phones for Low-cost Screeining in the Field. UC Berkely News. 21 July 2009. Available: http://www.berkeley.edu/news/media/releases/2009/07/21_cellscope.shtml.
[2] Flynn, Sean. Litigation Challenging Regulation of Data Mining. American University Washington College of Law: Program on Information Justice and Intellectual Property. 31 March 2008. Available: http://www.wcl.american.edu/pijip/go/blog-post/litigation-challenging-regulation-of-data-mining.
No comments:
Post a Comment